Use of laser-induced ionization to detect soot inception in premixed flames.
نویسندگان
چکیده
Experimental measurements of laser-induced ionization were performed for ethene-air premixed flames operated near the soot inception point. Soot was ionized with a pulsed laser operated at 532 nm. The ionization signal was collected with a tungsten electrode located in the postflame region. Ionization signals were collected by use of both single-electrode and dual-electrode configurations. Earlier laser-induced-ionization studies focused on the use of a single biased electrode to generate the electric field, with the burner head serving as the path to ground. In many practical combustion systems, a path to ground is not readily available. To apply the laser-induced-ionization diagnostic to these geometries, a dual-electrode geometry must be employed. The influence of electrode configuration, flame equivalence ratio, and flame height on ionization signal detection was determined. The efficacy of the laser-induced-ionization diagnostic in detecting soot inception in the postflame region of a premixed flame by use of a dual-electrode configuration was investigated. Of the dual-electrode configurations tested, the dual-electrode geometry oriented parallel to the laser beam was observed to be most sensitive for detecting the soot inception point in a premixed flame.
منابع مشابه
Simultaneous planar laser-induced incandescence, OH planar laser-induced fluorescence, and droplet Mie scattering in swirl-stabilized spray flames.
Simultaneous planar laser-induced incandescence, hydroxyl radical planar laser-induced fluorescence, and droplet Mie scattering are used to study the instantaneous flame structure and soot formation process in an atmospheric pressure, swirl-stabilized, liquid-fueled, model gas-turbine combustor. Optimal excitation and detection schemes to maximize single-shot signals and avoid interferences fro...
متن کاملModeling of soot particle inception in aromatic and aliphatic premixed flames
The growth of hydrocarbon molecules up to sizes of incipient soot is computed in premixed laminar flames using kinetic Monte Carlo and molecular dynamic methodologies (AMPI code). This approach is designed to preserve atomistic scale structure (bonds, bond angles, dihedral angles) as soot precursors evolve into three-dimensional structures. Application of this code to aliphatic (acetylene) and ...
متن کاملRecent developments in laser-induced incandescence (LII) for soot diagnostics in high-pressure laminar flames and engine-like Diesel combustion
The analysis of soot formation and oxidation is essential for Diesel engine development to meet future pollutant emission reduction requirements. In recent years laser-induced incandescence (LII) has developed to a powerful tool for soot diagnostics in flames, even in the challenging environment of Diesel combustion. This work presents some recent applications of LII for soot particle sizing in...
متن کاملSoot Formation in Laminar Premixed Ethylene/Air Flames at Atmospheric Pressure
Soot formation was studied within laminar premixed ethylene/air flames (C/O ratios of 0.78-0.98) stabilized on a flat-flame burner operating at atmospheric pressure. Measurements included soot volume fractions by both laser extinction and gravimetric methods, temperatures by multiline emission, soot structure by thermophoretic sampling and transmission electron microscopy, major gas species con...
متن کاملA Reaction Pathway for Nanoparticle Formation in Rich Premixed Flames
Aromatics growth beyond 2-, 3-ring PAH is analyzed through a radical-molecule reaction mechanism which, in combination with a previously developed PAH model, is able to predict the size distribution of aromatic structures formed in rich premixed flames of ethylene at atmospheric pressure with C/O ratios across the soot threshold limit. Modeling results are in good agreement with experimental da...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied optics
دوره 44 24 شماره
صفحات -
تاریخ انتشار 2005